Q.1. Coue. 101	LC402					
Reg. No:						

R16

	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR	
	(AUTONOMOUS)	
	B.Tech II Year I Semester Supplementary Examinations November-2020	
	SWITCHING THEORY AND LOGIC DESIGN	
T.	(Electronics & Communication Engineering)	C 0
111	ne: 3 hours Max. Mark	s: 60
	(Answer all Five Units $5 \times 12 = 60$ Marks)	
	UNIT-I	
1	a Convert the following numbers.	6M
	i. (5164.4413)8 to binary	
	ii. Convert (A3C2.D)16 to binary and then to octal.	
	iii. (1032.2)6 to decimal	
	b Simplify the following Boolean expressions to minimum no. of literals.	6M
	i. ABC+A'B+ABC'	
	ii. $(BC'+A'D)(AB'+CD')$	
	iii. x'yz+xz	
	iv. xy+x(wz+wz')	
	OR	
2	a Subtract the given binary numbers 111001-1010 by using 2's complement form.	6M
	b Obtain the Dual of the following Boolean expressions.	6M
	1. $AB+A(B+C)+B'(B+D)$	
	11. $A+B+A'B'C$	
	111. A'B+A'BC'+A'BCD+A'BC'D'E	
	IV. ABEF+ABE'F'+A'B'EF	
	UNIT-II	
3	a Minimize the following Boolean function using K-Map	6M
	$F(A, B, C, D) = \Sigma m (0, 2, 4, 6, 8, 10, 12, 14).$	
	b Realize the above Boolean function using NAND Gates only.	6M
4	UR Simplify the Declean function by using tabulation method	101/
4	a Simplify the boolean function by using tabulation method $E(A, B, C, D) = \sum_{m} (0, 1, 2, 5, 6, 7, 8, 0, 10, 14)$	TOM
	$\Gamma(A, B, C, D) = 2 \Pi \{(0, 1, 2, 3, 0, 7, 8, 9, 10, 14)\}$ h Implement AND gate using NOR gate(s) only	2М
		2111
=	Design and implement BCD to Every 2 and converter using logic setes	<i>C</i> M
3	a Design and Implement BCD to Excess-5 code converter using logic gates.	OIVI GM
	b Design 52:1 Multiplexer using two 16:1 Muxs and one 2:1 Mux using block	0111
	diagram representation.	
	OR	
6	a Design the full adder circuit using half adders	6M
	b Draw and explain the operation of 3×2 binary multiplier.	6NI
_		
7	a Convert S-R flip flop into JK-flip flop. Draw and explain the logic diagram neatly.	6M
	b A clocked sequential circuit with single input x and single output z produces an	6M
	output $z = 1$ whenever the input x compares the sequence 1011 and overlapping is	
	anowed. Obtain the state diagram, state table and design the circuit with D flip-	
	nops.	

Q.P. Code: 16EC402

OR

	UK	
8	a Design a binary counter having repeated binary sequence 0, 1, 2, 4, 5, 6 using JK	6M
	flip flops.	
	b Implement 4-bit ring counter using suitable shift register. Briefly describe its	6M
	operation.	
	UNIT-V	
9	a Implement the following two Boolean functions with a PLA:	6M
	$F1(A, B, C) = \Sigma(0, 1, 2, 4)$	
	$F2(A, 3, C) = \Sigma (0, 5, 6, 7)$	
	b Discuss briefly about Mealy models of sequential machines.	6M
	OR	
10	Implement the following Boolean functions with a PAL:	12M
	$W(A,B,C,D) = \Sigma(2,12,13)$	
	X(A,B,C,D)=Σ(7,8,9,10,11,12,13,14,15)	
	Y(A,B,C,D)=Σ(0,2,3,4,5,6,7,8,10,11,15)	
	$Z(A,B,C,D) = \Sigma(1,2,8,12,13)$	

*** END ***